351 research outputs found

    The catalytic role of beta effect in barotropization processes

    Get PDF
    The vertical structure of freely evolving, continuously stratified, quasi-geostrophic flow is investigated. We predict the final state organization, and in particular its vertical structure, using statistical mechanics and these predictions are tested against numerical simulations. The key role played by conservation laws in each layer, including the fine-grained enstrophy, is discussed. In general, the conservation laws, and in particular that enstrophy is conserved layer-wise, prevent complete barotropization, i.e., the tendency to reach the gravest vertical mode. The peculiar role of the β\beta-effect, i.e. of the existence of planetary vorticity gradients, is discussed. In particular, it is shown that increasing β\beta increases the tendency toward barotropization through turbulent stirring. The effectiveness of barotropisation may be partly parameterized using the Rhines scale 2πE01/4/β1/22\pi E_{0}^{1/4}/\beta^{1/2}. As this parameter decreases (beta increases) then barotropization can progress further, because the beta term provides enstrophy to each layer

    Science directions in a post-COP21-world of transient climate change: enabling regional to local predictions in support of reliable climate information

    Get PDF
    During recent decades, through theoretical considerations and analyses of observations andmodel simulations, the scientific community has fundamentally advanced our understanding of thecoupled climate system, thereby establishing that humans affect the Earth’s climate. Resulting from thisremarkable accomplishment, the COP21 agreement marks a historic turning point for climate research bycalling for actionable regional climate change information on time scales from seasonal to centuries for thebenefit of humanity, as well as living and nonliving elements of the Earth environment. Out of the underlyingUnited National Framework Convention on climate Change process, improving seamless regional climateforecast capabilities emerges as a key challenge for the international research community. Addressing itrequires a multiscale approach to climate predictions. Here we offer a vision that emphasizes enhancedscientific understanding of regional to local climate processes as the foundation for progress. The scientificchallenge is extreme due to the rich complexity of interactions and feedbacks between regional andglobal processes, each of which affects the global climate trajectory. To gain the necessary scientific insightand to turn it into actionable climate information require technical development, international coordination,and a close interaction between the science and stakeholder communities

    On the superposition of mean advective and eddy-induced transports in global ocean heat and salt budgets

    Get PDF
    Ocean thermal expansion is a large contributor to observed sea level rise, which is expected to continue into the future. However, large uncertainties exist in sea level projections among climate models, partially due to intermodel differences in ocean heat uptake and redistribution of buoyancy. Here, the mechanisms of vertical ocean heat and salt transport are investigated in quasi-steady-state model simulations using the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2). New insights into the net effect of key physical processes are gained within the superresidual transport (SRT) framework. In this framework, vertical tracer transport is dominated by downward fluxes associated with the large-scale ocean circulation and upward fluxes induced by mesoscale eddies, with two distinct physical regimes. In the upper ocean, where high-latitude water masses are formed by mixed layer processes, through cooling or salinification, the SRT counteracts those processes by transporting heat and salt downward. In contrast, in the ocean interior, the SRT opposes dianeutral diffusion via upward fluxes of heat and salt, with about 60% of the vertical heat transport occurring in the Southern Ocean. Overall, the SRT is largely responsible for removing newly formed water masses from the mixed layer into the ocean interior, where they are eroded by dianeutral diffusion. Unlike the classical advective–diffusive balance, dianeutral diffusion is bottom intensified above rough bottom topography, allowing an overturning cell to develop in alignment with recent theories. Implications are discussed for understanding the role of vertical tracer transport on the simulation of ocean climate and sea level

    Anisotropic domain walls

    Get PDF
    We find an anisotropic, non-supersymmetric generalization of the extreme supersymmetric domain walls of simple non-dilatonic supergravity theory. As opposed to the isotropic non- and ultra-extreme domain walls, the anisotropic non-extreme wall has the \emph{same} spatial topology as the extreme wall. The solution has naked singularities which vanish in the extreme limit. Since the Hawking temperature on the two sides is different, the generic solution is unstable to Hawking decay.Comment: 11 pages, LaTeX, 3 PostScript figures, uses amstex and epsfi

    Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations

    Get PDF
    A parameterization for the restratification by finite-amplitude, submesoscale, mixed layer eddies, formulated as an overturning streamfunction, has been recently proposed to approximate eddy fluxes of density and other tracers. Here, the technicalities of implementing the parameterization in the coarse-resolution ocean component of global climate models are made explicit, and the primary impacts on model solutions of implementing the parameterization are discussed. Three global ocean general circulation models including this parameterization are contrasted with control simulations lacking the parameterization. The MLE parameterization behaves as expected and fairly consistently in models differing in discretization, boundary layer mixing, resolution, and other parameterizations. The primary impact of the parameterization is a shoaling of the mixed layer, with the largest effect in polar winter regions. Secondary impacts include strengthening the Atlantic meridional overturning while reducing its variability, reducing CFC and tracer ventilation, modest changes to sea surface temperature and air–sea fluxes, and an apparent reduction of sea ice basal melting.National Science Foundation (U.S.) (Grant OCE-0612143)National Science Foundation (U.S.) (Grant OCE-0612059)National Science Foundation (U.S.) (Grant OCE-0825376)National Science Foundation (U.S.) (Grant DMS-0855010)National Science Foundation (U.S.) (Grant OCE-0934737

    100 Years of Earth System Model Development

    Get PDF
    This is the final version. Available from American Meteorological Society via the DOI in this recordToday’s global Earth System Models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This chapter gives an approximately chronological account of the many and profound conceptual and technological advances that made today’s models possible. For brevity, we omit any discussion of the roles of chemistry and biogeochemistry, and terrestrial ice sheets

    Non-Extreme and Ultra-Extreme Domain Walls and Their Global Space-Times

    Get PDF
    Non-extreme walls (bubbles with two insides) and ultra-extreme walls (bubbles of false vacuum decay) are discussed. Their respective energy densities are higher and lower than that of the corresponding extreme (supersymmetric), planar domain wall. These singularity free space-times exhibit non-trivial causal structure analogous to certain non-extreme black holes. We focus on anti-de~Sitter--Minkowski walls and comment on Minkowski--Minkowski walls with trivial extreme limit, as well as walls adjacent to de~Sitter space-times with no extreme limit.Comment: Revised version, 4 pages of REVTEX, UPR-546-T/Rev. Two figures not included. This version contains further elaboration of the space-time causal structur

    Cauchy Horizons, Thermodynamics and Closed Time-like Curves in Planar Supersymmetric Space-times

    Full text link
    We study geodesically complete, singularity free space-times induced by supersymmetric planar domain walls interpolating between Minkowski and anti-de Sitter (AdS4AdS_4) vacua. A geodesically complete space-time without closed time-like curves includes an infinite number of semi-infinite Minkowski space-times, separated from each other by a region of AdS4AdS_4 space-time. These space-times are closely related to the extreme Reissner Nordstr\" om (RN) black hole, exhibiting Cauchy horizons with zero Hawking temperature, but in contrast to the RN black hole there is no entropy. Another geodesically complete extension with closed time-like curves involves space-times connecting a finite number of semi-infinite Minkowski space-times.Comment: 11 pages, 1 figure appended, phyzz
    corecore